A transcriptional signature of hub connectivity in the mouse connectome.

نویسندگان

  • Ben D Fulcher
  • Alex Fornito
چکیده

Connectivity is not distributed evenly throughout the brain. Instead, it is concentrated on a small number of highly connected neural elements that act as network hubs. Across different species and measurement scales, these hubs show dense interconnectivity, forming a core or "rich club" that integrates information across anatomically distributed neural systems. Here, we show that projections between connectivity hubs of the mouse brain are both central (i.e., they play an important role in neural communication) and costly (i.e., they extend over long anatomical distances) aspects of network organization that carry a distinctive genetic signature. Analyzing the neuronal connectivity of 213 brain regions and the transcriptional coupling, across 17,642 genes, between each pair of regions, we find that coupling is highest for pairs of connected hubs, intermediate for links between hubs and nonhubs, and lowest for connected pairs of nonhubs. The high transcriptional coupling associated with hub connectivity is driven by genes regulating the oxidative synthesis and metabolism of ATP--the primary energetic currency of neuronal communication. This genetic signature contrasts that identified for neuronal connectivity in general, which is driven by genes regulating neuronal, synaptic, and axonal structure and function. Our findings establish a direct link between molecular function and the large-scale topology of neuronal connectivity, showing that brain hubs display a tight coordination of gene expression, often over long anatomical distances, that is intimately related to the metabolic requirements of these highly active network elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome

Studies of nervous system connectivity, in a wide variety of species and at different scales of resolution, have identified several highly conserved motifs of network organization. One such motif is a heterogeneous distribution of connectivity across neural elements, such that some elements act as highly connected and functionally important network hubs. These brain network hubs are also densel...

متن کامل

Functional connectivity hubs of the mouse brain

Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric diso...

متن کامل

Developmental Changes in Brain Network Hub Connectivity in Late Adolescence.

The human brain undergoes substantial development throughout adolescence and into early adulthood. This maturational process is thought to include the refinement of connectivity between putative connectivity hub regions of the brain, which collectively form a dense core that enhances the functional integration of anatomically distributed, and functionally specialized, neural systems. Here, we u...

متن کامل

Network centrality in the human functional connectome.

The network architecture of functional connectivity within the human brain connectome is poorly understood at the voxel level. Here, using resting state functional magnetic resonance imaging data from 1003 healthy adults, we investigate a broad array of network centrality measures to provide novel insights into connectivity within the whole-brain functional network (i.e., the functional connect...

متن کامل

I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing

Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2016